Objectives
Cardiac surgery can lead to post-operative end-organ complications secondary to activation of systemic inflammatory response. We hypothesize that surgical trauma or cardiopulmonary bypass (CPB) may initiate systemic inflammatory response via release of mitochondrial DNA (mtDNA) signaling Toll-like receptor 9 (TLR9) and interleukin-6 production (IL-6).
Materials and methods
The role of TLR9 in systemic inflammatory response in cardiac surgery was studied using a murine model of sternotomy and a porcine model of sternotomy and CPB. mtDNA and IL-6 were measured with and without TLR9-antagonist treatment. To study ischemia-reperfusion injury, we utilized an ex-vivo porcine kidney model.
Results
In the rodent model (n = 15), circulating mtDNA increased 19-fold (19.29 ± 3.31, p < 0.001) and plasma IL-6 levels increased 59-fold (59.06 ± 14.98) at 1-min post-sternotomy compared to pre-sternotomy. In the murine model (n = 11), administration of TLR-9 antagonists lowered IL-6 expression post-sternotomy when compared to controls (59.06 ± 14.98 vs. 5.25 ± 1.08) indicating that TLR-9 is a positive regulator of IL-6 after sternotomy. Using porcine models (n = 10), a significant increase in circulating mtDNA was observed after CPB (Fold change 29.9 ± 4.8, p = 0.005) and along with IL-6 following renal ischaemia-reperfusion. Addition of the antioxidant sulforaphane reduced circulating mtDNA when compared to controls (FC 7.36 ± 0.61 vs. 32.0 ± 4.17 at 60 min post-CPB).
Conclusion
CPB, surgical trauma and ischemic perfusion injury trigger the release of circulating mtDNA that activates TLR-9, in turn stimulating a release of IL-6. Therefore, TLR-9 antagonists may attenuate this response and may provide a future therapeutic target whereby the systemic inflammatory response to cardiac surgery may be manipulated to improve clinical outcomes.